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ABSTRACT

Internal Quality Control (IQC) is the process of evaluating and control-
ling the reliability of a laboratory test before running patient samples. 
Currently used IQC process focus on the management of Total Analytical 
Error (TAE) using rule-based approaches. The process cannot predict ti-
mings of Total Allowable Error (TEa) violations, precisely. In the study, 
we proposed a predictive computational approach for IQC, Predictive 
Quality Control Algorithm (PQCA), to solve with this problem using 
Gaussian Process for Machine Learning (GPML) method. The software 
implementation carried out in Python and Scikit-learn library running 
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on a standard Windows-based PC. A digital control chart 
based on PQCA was introduced. It is demonstrated that ob-
servations fall within the 95% confidence intervals of their 
corresponding predictions generated by PQCA. It also pre-
sented that TAE calculated using classical formula is unable 
to capture all violations of TEa. PQCA is a simple procedure 
that can directly relate raw control data to quality targets and 
enabled a predictive approach with a high degree of accura-
cy. The classical TAE calculation model is based on a uni-
variate Gaussian model. GPML, which PQCA is based on, 
is generalized by a multivariate Gaussian. Therefore, PQCA 
can be viewed as a generalization of the classical IQC model. 
Using PQCA, laboratories can take a proactive approach to 
the control of analytical quality, meet regulatory institutions’ 
requirements, and hence provide better patient outcomes. 
PQCA based IQC can achieve controlling of analytical varia-
bility using a single algorithm overcoming the shortcomings 
of conventional methods. In the future, newly available com-
putational models make possible more sophisticated, predic-
tive mathematical frameworks for IQC.

ÖZET

İç Kalite Kontrol (İKK), hasta numunelerini çalıştırmadan 
önce bir laboratuvar testinin güvenilirliğini değerlendirme ve 
kontrol etme sürecidir. Mevcut İKK süreci, kural tabanlı yak-
laşımlar kullanarak Toplam Analitik Hatanın (TAE) yöneti-
mine odaklanmaktadır. Toplam İzin Verilebilir Hata (TEa) 
ihlallerinin zamanlamasını tam olarak tahmin edemez. Çalış-
mada, Tahmine Dayalı Kalite Kontrol Algoritması (PQCA) 
için Gaussian Process for Machine Learning (GPML) yönte-
mini kullanarak İKK sürecini değerlendirmede tahmine da-
yalı bir hesaplama yaklaşımı önerildi. Python ve Scikit-learn 
kütüphanesinde yürütülen yazılım uygulaması, Windows ta-
banlı standart bir PC üzerinde çalıştırıldı. PQCA’ya dayalı bir 
dijital kontrol tablosu oluşturuldu. Gözlemlerin, PQCA tara-
fından üretilen karşılık gelen tahminlerinin %95 güven ara-
lığı içinde kaldığı gösterildi. Ayrıca, klasik formül kullanıla-
rak hesaplanan TAE’nin tüm TEa ihlallerini yakalayamadığı 
da ortaya konuldu. PQCA, ham kontrol verilerini doğrudan 
kalite hedefleriyle ilişkilendirebilen basit bir prosedür olup, 
yüksek derecede doğrulukla tahmine dayalı bir yaklaşım 
sağlamıştır. Klasik TAE hesaplama modeli, tek değişkenli 
bir Gauss modeline dayanır. PQCA’nın temel aldığı GPML, 
çok değişkenli bir Gaussian modeldir. Bu nedenle PQCA, 
klasik IQC modelinin bir genellemesi olarak görülebilir. La-
boratuvarlar, PQCA’yı kullanarak analitik kalitenin kontro-
lüne proaktif bir yaklaşım getirebilir, düzenleyici kurumların 
gereksinimlerini karşılayabilir ve dolayısıyla daha doğru ve 
güvenilir hasta sonuçları sağlayabilir. PQCA tabanlı İKK, 
geleneksel yöntemlerin eksikliklerinin üstesinden gelen tek 
bir algoritma kullanarak analitik değişkenliğin kontrolünü 

sağlayabilir. Gelecekte, yeni kullanılabilir hesaplama model-
leri, İKK için daha karmaşık, tahmine dayalı matematiksel 
çerçeveleri mümkün kılacaktır.

INTRODUCTION

Laboratory tests play a main role in the diagnosis, treatment, 
and prognosis and constitute a principal part of electronic 
patient records. For this reason, accuracy and repeatability, 
two basic parameters that demonstrate the performance of 
laboratory tests, should be guaranteed. When the accuracy 
and repeatability of a measurement system do not change, or 
the range of the measurement series is called “analytical run” 
according to the Clinical & Laboratory Standards Institute 
guideline C24-A2 (1). It is the utmost 24 hours for bioche-
mical tests as declared by Clinical Laboratory Improvement 
Advisory Committee (CLIA)(2).

Internal Quality Control (IQC) is an evaluation process 
of the laboratory’s reliability using quality control materials 
with different levels of analyte concentrations before running 
patient samples, i.e. before each run, and whether the result is 
within the acceptable range. In particular, it aims at control-
ling the analytical processes in use. In the process, “quality 
control charts” used, which are historically similar to those 
employed in the industry. The most well-known charts are 
Levey-Jennings control charts, with mean target and standard 
deviation (SD) limits. In routine, IQC result from each run 
are marked on the charts, at how many SDs from the target 
value. Westgard multi-rules are most often used in medical 
laboratories to evaluate the IQC results (3). For tests with 
different analytical performance, it is not very practical to 
use the fixed rules. Therefore, it is recommended using “in-
dividualized quality control rules” according to the analytical 
performance of each test. To prevent non-standardized IQC 
assessment of laboratory staff from these assessment chal-
lenges, many laboratories prefer to use the a few of Westgard 
multiple rules rather than all.

IQC is based on the acceptance or rejection of the distan-
ce (bias) of the control results in the run; however the power 
to show repeatability is somewhat weaker. For this reason, in 
addition to IQC applications, total analytical error (TAE) is 
monitored to determine analytical performance in clinical la-
boratories (4). TAE is the combination of bias and precision, 
and is calculated by the formula as bias ± 1.65 CV%. There-
fore, it is a common practice to use as a quality indicator for 
test performance (4). It has also become the focus of routine 
IQC work conducted regularly at many clinical laboratories.

TAE is primarily used to characterize the past analytical 
performance of clinical laboratories by regulatory bodies. 
Laboratories need to ensure the future performance of their 
analytical systems so that future analytical errors lie within 
Total Allowable Error (TEa). TAE’s current formulations do 
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not adequately mitigate these two diverging needs. In parti-
cular, the following issues need to address:

a. Current methods used in practice to compute TAE sum-
marize the past performance of analytical systems. They do 
not offer any formal inference procedures for predicting the 
performance of analytical systems for a specific point in the 
future.

b. In theory, TAE might exceed the allowable limit at any 
time point. That is called an out-of-control event (OOCE). In 
cases an OOCE has been identified to occur at a control me-
asurement point, the current IQC procedures do not offer any 
support to determine the certain moment when this OOCE 
might have started.

c. In Levey-Jennings chart, as one of the most widely 
used IQC tools, the acceptable limits are usually defined as 
two SDs, in each direction. Manufacturer based SD limits 
are often wider than the TEa limits currently used in practice 
(5). Consequently, control results accepted in routine prac-
tice, based on Levey-Jennings charts, may be classified as 
unacceptable based on TEa.

In the 1970s, Westgard used power-function curves when 
defining rules that set OOCEs. However, high-capacity cent-
ral processors, graphics processors, and artificial intelligence 
software tools were not available in those years. However, 
we have high-capacity hardware and software support with 
artificial intelligence today. In the study, we aimed to propo-
se a computational framework, “Predictive Quality Control 
Algorithm (PQCA)”, which is a generalization of TAE and 
captures the temporal aspects of the data, to overcome all of 

the above shortcomings of the current approaches. This new 
algorithm is designed to enable laboratories to take correc-
tive actions in case of past OOCEs and to take preventative 
actions in case of future OOCEs through predictive capabi-
lities and, hence a heightened level of readiness, and a new 
problem-solving capability are provided to laboratories.

MATERIALS AND METHODS

Routine IQC data from the database of the clinical laborato-
ries at XXX Training and Research Hospital were retrospec-
tively used in the study. No patient data was reported based 
on the findings of this study. The study was conducted by 
following the Helsinki Declaration, and the approval of the 
local ethics committee of XXX Training and Research Hos-
pital (Decision No: 14/20, 2017) has been obtained.

A total of 10 analytes included in this work: aspartate 
aminotransferase, calcium, creatinine, glucose, sodium, CA 
15.3, cortisol, follicle-stimulating hormone (FSH), insulin, 
testosterone, thyroid stimulating hormone, and vitamin B12 
(see Table 1). These analytes have been chosen for the fol-
lowing reasons; a) to represent photometric, potentiometric, 
and immune-chemical assays, b) because they are common 
and easily recognizable. Each collected data was evaluated 
by two medical biochemistry specialists, one for each bioche-
mical and immunochemical test group. IQC data was normal-
ly checked against non-analytical errors, e.g., human errors, 
marked if found to be erroneous and the control measurement 
was repeated. Data marked as erroneous were not included in 
the study. TAE is the combination of bias and precision, and 
is calculated by the formula as bias ± 1.65 CV% (4).

Table 1. Analytes evaluated within the scope of the study.
Analyte Units Analyzer Method IQC Product Specifications

AST
Ca
CREA
Glc

U/L
mg/dL
mg/dL
mg/dL

AU 5800
Beckman Coulter Inc., CA, 
USA

Spectrophotometric Beckman Coulter Control Serum Level 
1 and 2, Catalogue Number ODC0003-
ODC0004, Lot Number 0037-0038

Na mmol/L AU 5800
Beckman Coulter Inc., CA, 
USA

Indirect 
potentiometric

Beckman Coulter Control Serum Level 
1 and 2, Catalogue Number ODC0003-
ODC0004, Lot Number 0037-0038 

CA 15.3 U/mL UniCel DxI 800
Beckman Coulter Inc., CA, 
USA

Chemiluminescence MAS T-Marker Liquid Assayed 
Immunoassay Control Level I and II, 
Catalogue Number TUM-101- TUM-
202, Lot Number TM19061- TM19062, 
Thermo Fischer Scienfic Inc., MA, USA

Cortisol
Insulin
Testosteron
TSH
Vitamin B12

µg/dL
µIU/mL
ng/dL
µU/mL
pg/mL

UniCel DxI 800
Beckman Coulter Inc., CA, 
USA

Chemiluminescence MAS Liquimmune Liquid Assayed 
Immunoassay Control Level I and II, 
Catalogue Number LIG-101- LIG-202, 
Lot Number LIA20041- LIA 20042, 
Thermo Fischer Scienfic Inc., MA, USA

AST: aspartate aminotransferase; Ca: calcium; CREA: creatinine; Glc: Glucose; IQC: internal quality control; Na: sodium; 
TSH: thyroid stimulating hormone.
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Gaussian Process for Machine Learning (GPML) (6) was 
used as the formal basis of the predictive model proposed in 
this work. GPML’s computational implementation was per-
formed using Python 3.6.2 and Sci-Kit Learn Library 0.19.1 
(7). A 64-bit Windows 10 machine (Intel i5 5200-U, 12 GB 
RAM) was used to run experiments reported in this article.
Gaussian Process For Machine Learning

GPML is an extensive machine-learning algorithm for 
solving time-series-based medical problems (8-10). GPML 
is proposed as a probabilistic model to capture the generative 
process of control measurement variability. The selection of 
GPML is justified based on the fact that clinical laboratory 
control measurements are widely assumed to be normally 
distributed (1). This makes GPML an ideal candidate for our 
purposes as it is generalized by a multivariate Gaussian. The 
mean vector and the covariance matrix K together define 
multivariate Gaussian, uniquely. In GPML, the covariance 
between two points in the time series of control measure-
ments is defined by a positive definite kernel function k. For 

two output-input pairs, (y, t) and (y′, t′), the kernel function 
defines K (y, y′) = k (t, t′). Given a set of training observati-
ons y, t the distribution of test points y*, t* is

p(y*|y) ~ N( *, Σ), (Equation 1)

such that

* =K (t*, t) K (t, t)−1y, (Equation 2a)

Σ = K (t*, t*) − K (t*, t) K (t, t)−1K (t*, t)T (Equation 2b)

The kernel k is a function whose behavior is governed by 
a set of hyper-parameters.

A kernel function is used to compute the covariance mat-
rix. Thus, it plays a major role in the success of the GPML 
model. Although mathematically a vast number of kernel 
functions can be defined, the kernel function to be used for 
a specific analytical method needs to be consistent with the 
data observed. In Figure 2, PQCA output was shown for the 
same data as in Figure 1 except that the kernel function is 
chosen to be Matern instead of Radial Basis Function (RBF) 
(11). A close look at the two figures could show differences 
in details.

Figure 2. FSH level 1 control data processed using Matern kernel function

Figure 1. A Digital control chart for FSH level 1 control data
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In control measurement time-series data, systematic 
errors in the analytical processes may cause bias or drift. 
GPML natively supports tracking of bias or drift in the mat-
hematical model.

Equations 2a and 2b form the basis of GPML inference 
which enables the prediction of y* after observing data (t, 
y), thus updating prior beliefs about points t*. As the GPML 
enables us to predict complete functions over the space of t, 
it also provides us both with mean predictions and with as-
sociated measures of uncertainty. In many cases of analytical 
methods, though, we observe some noise-corrupted versions 
of data. In other cases, where GPML over-fits the data, we 
might want to introduce some terms into the predictive equ-
ations to condition the data. Although in this article we will 
not be diving into these issues to keep our argument focused 
on the core issues, GPMLs can easily be extended to allow 
for Gaussian noise models of various sorts.

A digital control chart was prepared for each control ma-
terial and was presented to the user through a computer (Fi-
gure 1). The chart displayed measured concentration on the 
vertical y-axis vs. time on the horizontal x–axis (x–the axis 
was the time axis and was denoted as ’ t-axis’ where time va-
lues were given relative to the start date which was the origin 
of the t-axis). The target mean value, provided by the ma-
nufacturer of the IQC material, was drawn as a solid (oran-
ge-) horizontal line. Dashed (green-) horizontal lines, also 
provided by the manufacturer, represented two SDs (1.96 to 
be exact) from the target mean value in each direction. The 
shaded (light green) area in the middle marked the TEa. TEa 
value was set at 21.19% (5) above and below the target mean 
s which the current approach is based on a control limit. Pre-
diction point using all data observed and predicted (TAEp) 
value, referred to in this article as upper and lower control 
limits, for the control material which in this case was FSH, 
level 1. At the top of Figure 1 were the name, the kit number, 
the numerical values for the target mean, the target SD, and 
the TEa set for the control material. Kernel information was 
placed at the top right and will be reviewed in detail in the 
following section.

Measured control results were called observations, whe-
reas data predicted were called predictions. Observations 
were marked as solid (red-) dots on the chart. The continuous 
solid (blue-) curve consists of the predictions made. Symmet-
rically shaded (yellow-) areas on each side of the blue curve 
showed 95% confidence intervals (CI)s of predictions. 95% 
CI limits permit the use of simple decision criteria as will be 
presented later.

Prediction curves and 95% CIs were graphed on the di-
gital control chart. OOCE’s were defined to be those points 
where 95% CI limits overflow the control limits. Predictions 

and CI limits can help identification of TEa violations (OO-
CE’s) which may be in the past or the future of the analyti-
cal process under study. An OOCE occurred when CI limits 
exceeded control limits (TEa lines) in any direction. OOCEs 
that fall on the right-hand side of the current observation po-
int were called future OOCEs and OOCEs that fall on the 
left-hand side of the current observation point were called 
past OOCEs. In Figure 1, one example of an OOCE could 
be observed between the 5th and the 6th observations (days 
4–8) where CI limits go below the lower control limit and 
another one could be observed after the 20th observation 
(days 24-28).

In the case of OOCE’s in the past, points that lie on the 
left side of the active point, of the analytical process under 
study, recovery and correction procedures were recommen-
ded to be started. In the case of future OOCE points, points 
that lie on the right side of the current observation time, eit-
her a new observation was planned for just before the first 
future OOCE or immediate corrective action was started.

PQCA presented below was activated each time a cont-
rol result is observed, per control material. The definition of 
PQCA:

1.	 Is the current observation corrupted by non-analytical ca-
uses, e.g., using the wrong vial? If yes, reject the current 
observation and repeat the control measurement.

2.	 Run the GPML algorithm to generate a control chart 
using all data accumulated so far for the control material. 
The output of GPML is an entire prediction function for 
the specified range of time. Also in the output are the as-
sociated 95% CIs for predictions.

3.	 Note on the chart, periods where 95% CI limits are not 
contained fully within upper and lower control limits. 
Call these periods OOCE.

4.	 For OOCE’s with time periods smaller than the time of 
the current observation, which is OOCE’s in the past of 
the analytical process, start the laboratory’s review pro-
cedure (not described in this article) for patient results 
generated during these OOCE periods.

5.	 For predicted OOCE’s, which are in the future of the pro-
cess, either start corrective action immediately or sche-
dule another control measurement for a time point well 
before the first OOCE is predicted to occur.

RESULTS

The PQCA algorithm is defined and a digital control chart 
is introduced in the materials and methods section. PQCA is 
applied to each control level of 10 analytes chosen for this 
work. Similar conclusions are reached for the other analytes 
included in the study. Results are presented for FSH as a rep-
resentative.
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Figure 4 presents TAE calculations using the classical 
formula TAE = bias% + 1.65 CV%. Solid black circles show 
TAE values computed as usual for each observation point. 
The solid blue curve shows TAE values computed for each 
prediction point using all data; both observed and predicted, 
total analytical error–predicted (TAEp). The horizontal axis 
shows the normalized data. TEa is set to 16.7%, which is the 
area shaded in the graphic. In TAE calculations, bias repre-
sents drift from the manufacturer’s mean, and CV% stands 
for the coefficient of variation.

TAE changes very little from one observation to another 
whereas TAEp is wigglier. The reason for this is that TAE 
computes two terms related to long-term averages of obser-
ved data. Consequently, TAE and TAEp follow separate tra-
jectories. Around day 50, TAEp exceeds the upper control li-
mit. TAE, which is the model used in current practice, misses 

this OOCE. This demonstrates that the classical TAE method 
may miss some OOCE’s.

DISCUSSION

The use of ML-based solutions to ease the burden of increa-
sing test demand and to improve quality and safety in clinical 
laboratories has begun in recent years (12). Although clini-
cal laboratories are health services where digitalization and 
automation are used extensively in daily practice, there are 
limited examples that exist of ML implemented into routine 
clinical practice (13, 14). However, publications on ML re-
search in clinical laboratory medicine still on arise in several 
aspects of laboratory work including the evaluation of flow 
cytometry results, classification of cell morphology, interpre-
tation of urine steroid profiles, test result interpretation, test 
result prediction, and the diagnosis of hematologic disorders 
(15-20). The model we proposed is the first study that emp-

Figure 4. Comparison of TAE with TAE-predicted for FSH level 1 control data

Figure 3. Prediction-observation pairs for FSH Level 1 kernel function testing
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loys a ML approach to the analytical perspective of clinical 
laboratory practice by predicting past and future OOCEs in 
IQC practice. The goal of this study is approached via the 
probabilistic framework of GPML.

In our study, we use the GPML approach to learn from 
time series control data and to predict both past and future 
OOCE’s. In the control data vs time series, one would expect 
observations that stand closer to each other in time should 
be more similar to each other than to those that stand farther 
away. We can imagine two consecutive observations separa-
ted from each other by time-distance ∆t. Assume ∆t is made 
smaller and smaller approaching the limit to zero. As ∆t as-
sumes smaller and smaller values, two observations would 
be expected to get more and more similar to each other in 
magnitude. In the limit, two observations should be identical. 
If ∆t is now moved in the reverse direction and it gets larger 
and larger, two observations would be less similar in mag-
nitude. We can generalize this phenomenon so that control 
observations are correlated to each other in a statistical sense. 
The form of this correlation is important and constitutes the 
basis of the predictive models presented in this work.

The main outcome of this research, PQCA, has several 
attractive characteristics in comparison to classical rule-ba-
sed quality control procedures:

1.	 PQCA enables proactive control of analytical methods’ 
performance. It is capable of predicting future OOCE’s. 
In case of a future OOCE either a new observation is 
planned for just before the OOCE or immediate correcti-
ve action is started.

2.	 PQCA can predict past OOCE’s. In the case of OOCE’s in 
the past, recovery and correction procedures are recom-
mended to be started.

3.	 PQCA is a simple control procedure with a single rule. 
PQCA links raw control measurements and OOCE eas-
y-use, obvious, and direct.

4.	 PQCA can easily model shifts in expected values of cont-
rol measurements, i.e., systematic errors.

5.	 Laboratories wishing to meet different quality goals may 
set CI accordingly. Larger CI values would indicate tigh-
ter quality goals.

6.	 PQCA can start making accurate predictions with as few 
as one observation. Classical rule-based control proce-
dures require a minimum number of observations, e.g., 
20, to generate valid results.

7.	 PQCA can easily work with a non-deterministic target 
mean, e.g., peer group means.

Figure 3 is intended to justify the use of the RBF kernel 
for FSH control data. PQCA is applied to each prefix of the 

time series data and a prediction is made for the next obser-
vation point. Predictions are marked as hollow blue circles 
and the corresponding observations are marked as solid black 
circles. All observations fall within the 95% CI of their respe-
ctive predictions. This process might constitute the basis for 
choosing the appropriate kernel function for controlling data. 
To make the kernel selection process more principled, cosi-
ne similarity between the observation and prediction vectors 
may be used, e.g., a cosine value of 0.99 or greater may be 
deemed to indicate a good kernel for the analyte under study.

There are a few limitations to the study. PQCA is not tes-
ted in real-time in routine IQC procedures. IQC data used in 
the study is evaluated retrospectively. The number and types 
of analytes included in the study are limited to a small group 
used in clinical laboratory routines.

Classical TAE calculation model, such as that proposed 
by Westgard (4), is based on a univariate Gaussian model 
(21). GPML, which the current approach is based on, is gene-
ralized by a multivariate Gaussian. In this respect, the com-
putational view proposed in this work, PQCA, is a generali-
zation of the classical IQC model.

CONCLUSIONS

The model we proposed is the first study that employs a ML 
approach to the analytical perspective of clinical laboratory 
practice by predicting past and future OOCEs in IQC pra-
ctice. PQCA empowers clinical laboratories to evaluate the 
past, present, and future of the IQC data, collectively. The 
use of PQCA can improve the quality of laboratory service 
delivery, especially by enabling earlier detection of syste-
matic errors. In this way, faster and more effective delivery 
of health services can be possible. Although it is possible to 
use it as a separate application, the integration of the PQCA 
into laboratory information systems may be a more accurate 
approach in terms of ease of use. This work might pioneer 
computational and laboratory sciences cooperation in quality 
management giving way to a new area of study, computati-
onal laboratory medicine. We believe that it will contribute 
significantly to the improvement of laboratory processes of 
the present as well as the future of laboratory medicine in 
general.
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